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MIXED CONVECTION PLUME ABOVE A HORIZONTAL LINE 
SOURCE SITUATED IN A FORCED CONVECTION APPROACH 

FLOW 
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Abstract-Both analytical and numerical techniques wereemployed to solve for the velocity and temperature 
fields in a two-dimensional mixed convection plume for the Prandtl number range from 0.72 to infinity. The 
method of inner and outer expansions was used for the Pr = co case while a parabolic, finite-difference method 

yielded the solutions for the other Prandtl numbers. In general, the plume was found to evolve with increasing 
distance from the line source from one with a basically forced convection character to one which resembles that 
for pure natural convection. The centerline velocity and temperature variations with distance from the line 
source were bounded by envelope curves constructed from the asymptotes for pure forced and pure natural 
convection. Highly accurate algebraic relations valid for all Prandtl numbers and all distances above the line 
source were developed to generalize the results obtained for the various discrete Prandtl numbers. The plume 
width increased with distance from the source, but at a slower rate at greater distances. The shapes of the 
velocityprofileschanged both with distance and Prandtl number, whereas all temperatureprofilesdisplayed a 
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common bell-like shape. 

NOMENCLATURE Greek symbols 

x-portion of T, equation (26) ; 
constant, equal to 1.0; 
constant, equal to F’(0) ; 
x-portion of ti, equation (40); 
constant, equal to 0.282; 

specific heat ; 
constant, equal to H(O)/Pr”’ ; 
velocity similarity variable, equation (A6); 
gravitational acceleration group, g/3Q/pc,v ; 
Grashof number, g/%&-X-3/v2 ; 
acceleration of gravity ; 
temperature similarity variable, equation 

(A7); 
natural convection plume width scale, 
equation (A8) ; 
plume width scale, equation (26); 
c-portion of ij, equation (40); 
characteristic length, u~/[v(g/&)“] ; 
exponent in equation (54); 
f-portion of $, equation (26); 
exponent in equation (52); 
Prandtl number; 
rate of heat input at line source; 
Reynolds number, (@,L/v)“~ ; 
Reynolds number, ii,.+ ; 
dimensionless temperature, equation (7a); 
temperature ; 
dimensionless velocities, equation (7a) ; 
velocity components ; 
dimensionless coordinates, equation (7b); 
coordinates. 

coefficient of thermal expansion ; 
dimensionless velocity profile half-width; 

dimensionless temperature profile half- 
width ; 
similarity variable, equation (41); 
similarity variable, equation (A8) ; 
similarity variable, equation (26); 
a characteristic temperature, Q/pc,v ; 
kinematic viscosity ; 
density; 

dimensionless stream function, $R/ii,L; 
stream function ; 
transverse coordinate for numerical compu- 
tation, $/t+ii,. 

Subscripts 

e, 
0, 
a, 

edge of boundary layer ; 
centerline ; 
free stream. 

Superscripts 

_’ inner region variable ; 
dimensional quantity. 

THE MIXED convection plume due to a horizontal line 
source of heat (or mass) situated in a uniform vertical 
flow is of interest in several engineering applications. 
These include, for example, hot-wire and hot-film 
anemometry, thermal pollution, and dispersion of 
pollutants (i.e. dispersion of mass). Furthermore, these 
applications may encompass heat or mass transfer in a 
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variety of fuids. so that the relevant range of the 
Prandtl or Schmidt number may extend from about 0.7 
to several thousand. The objective of this investigation 
is to obtain information about the plume velocity and 
temperature fields over the range 0.72 < Pr < x 

The physical processes which occur in the plume are 
such that, at very high Prandtl numbers, the velocity 
held is very much broader than the temperature field. 
For this situation, it is advantageous to obtain 
solutions by employing the method of inner and outer 

expansions. This method was used in the paper to solve 
the Pr = I; case. In this connection, it is well 
established that for natural convection boundary layer 
flows, solutions for Pr = x provide accurate results for 

a wide range of finite Prandtl numbers. Solutions for 
other Prandtl numbers were obtained numerically by a 
parabolic, fully implicit. finite-difference method. 

Algebraic generalizations of the results for the 
centerline velocity and temperature variations with 
vertical distance from the line source were developed. 
These algebraic representations yield highly accurate 
results for all Prandtl numbers in the investigated range 
and for all vertical distances, The graphical 

presentation of results encompassed the centerline 
velocity and temperature distributions, the velocity 
and thermal widths of the plume, and representative 
velocity and temperature protiles. 

In considering the available literature, it is relevant to 
note that a mixed convection plume undergoes an 
evolution with increasing vertical distance from the line 
source. The evolution starts with a near-field flow 
where forced convection is dominant, passes through a 
regime where buoyancy and forced convection are of 
comparable magnitude. and finally emerges as a far- 
field flow where natural convection is dominant. The 

near-field flow (i.e. a weakly buoyant plume) has been 
studied [I -31. Of these, ref. [3] also considered the far- 
field flow. A complete solution of the mixed convection 
problem has been given for a Prandtl number of 0.72 

r41. 
Afzal [4] solved the problem in terms of two 

coordinate expansions : a direct coordinate expansion 

for a weakly buoyant plume (i.e. applicable to the near 
tield). and an inverse coordinate expansion for a 
strongly buoyant plume (i.e. applicable to the far field). 
It was shown, however. that if the series for the weakly 
buoyant plume is suitably transformed, it can describe 
very accurately the solution in the entire domain of the 
flow. Afzal’s solution method, even though of 
considerable interest due to the use of sophisticated 
techniques for series manipulation to improve the 
accuracy. still requires a considerable amount of 
numerical work to find the solution ofa large number of 

interrelated ordinary differential equations. In fact, the 
amount of required numerical work may well exceed 
that needed for a direct numerical solution of the 

problem. 
Numerical solutions in the limit Pr --t c*: for the pure 

natural convection case have been obtained by 
Spalding and Cruddace [S] and by Kuiken and Rotem 

[6]. For forced convection dominant flows, analytical 
series solutions are available [4], which shovv the 
Prandtl number dependence. However. the limit as 
Pr + m does not appear to have been worked out for 
the mixed convection plume. 

In the presentation that follows. the govermnp 
equations are first formulated in general, after which 
the high Prandtl number solutton is developed 
(including a closed-form, near-field solution). This is 
followed by a description of the numerical finni- 

difference method. The results are then presented and 
discussed and, finally, the key findings are summarized 

2. GOVERNING EQUATIOWS 

Let us consider the mixed-convection plume above a 
2-dim. horizontal line source of heat situated in a 
vertical stream that approaches the line source from 
below with a uniform velocity. The boundary layer 
equations for this flow, using the Roussinesq 

approximation, are 

Here, X is the vertical coordinate and ,: is normal to it. 
The line source is situated at the origin of coordinates. 
X = jj = 0. (The Z coordinate is horizontal and lies 
along the line source.) The velocity and temperature 
distributions must be symmetrical with respect to the 

vertical axis, and they must take on the free-stream 
values outside the plume. Thus, we have the following 
boundary conditions : 

J7 = 0, 3 = &/c’G = (77’.,y = () / ‘_ ‘_ . (4) 

j = a, g = u,, ‘7’ _ 7; i5) 

In addition, an integral condition can be derived 
which relates the dependent variables to the constant 
rate of heat input Q at the line source. First, the energy 
equation (3) is integrated with respect to _v to yield, after 

use of equations (4) and (5) 

d ” 

-4 dx ,)1 
u(‘i‘- T;) dq’ = 0. 

This expresses the fact that since there are no sources or 
sinks of energy anywhere in the flow Sor X > 0, the 
energy transported through each plane S = constant is 
a constant which must be equal to the rate at which 
energy is released by the source, Q. at .? =: 0. Therefore. 
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The governing equations are made non-dimensional 
by introducing dimensionless variables defined by 

u = u&4, ii = &v/R, T- Tm = (B,/R)T, (7a) 

x = Lx, j = LyfR, R = (U,L/V)“~, (7W 

‘& = QM~cpv)> L = ~%-vkn%)21. (7c) 

The respective choices of 8,/R and L as the 
characteristic temperature and length, as given by 
equations (7), were motivated by the fact that they 

render, respectively, the integral condition (6) and the 
momentum equation (2) free of parameters. We may 
note that the present choice of Lis possible only because 
there is no physical length scale in the problem. By 
substituting equations (7) into equations (l)(6), we 
obtain 

“+“‘=Q 
ax ay 

au a24 ah 
uax+v-=‘+T, 

ay ay 

aT aT 1 a2T 
uz+vay=jqayZ (10) 

y=o, v=aulay=a7-jay=o, (11) 

y=m, u=l, T=O, (12) 

s 

00 
x > 0, uTdy = l/2. (13) 

0 

We may also note that the dimensionless streamwise 
coordinate x is related to the Reynolds number 
Re = i&X/v and the Grashof number Gr = g/?t&.X3/v2 
in the following manner : 

x = Z/L = Gr2/Re5. (14) 

The solutions of the system equations (@o(3) for 
very small x (pure forced convection) and very large x 
(pure natural convection) are well known. Therefore, 
they need not be derived in detail. They will, however, 
be stated in the Appendix because they serve as limits 
for the present mixed convection solution. A complete 
solution for arbitrary x will be found by a finite 
difference technique as will be described in Section 4; 
but first, in the next section, we will study the limit as 
Pr + co. Previous experience with natural convection 
boundary layers has shown that the Pr + 00 solution 
applies with good accuracy for a wide range of finite 
Prandtl numbers. 

3. HIGH PRANDTL NUMBER LIMIT 

For high Prandtl numbers, we can divide the region 
of interest into two layers, (i) the inner region (adjacent 
to the symmetry axis) where T # 0 and (ii) the outer 
region where T = 0. It is known that as the Prandtl 
number increases the inner region gets increasingly 
narrow, and in the limit Pr -+ m, the thickness of this 
layer becomes zero. 

3.1. Inner region 
We introduce stretched variables as follows : 

y’ = Pr”‘y, v” = Pr’l’v, T = Pr-‘12T. (15) 

The stretching of y renders the width of the inner layer 
of order unity. Insertion of equations (15) into 
equations (SHlO) and (13) gives 

_ 
?“+“=o, 
ax ay 

(16) 

&[u~+E$]=$+Pr-1~2F, (17) 

aF _aT a2;i: 
ux+vag=p, 

s m 

l/2 = UT dy”. (19) 
0 

Letting Pr + co, equation (17) becomes, to zeroth 
order, 

a2qay2 = 0. (20) 

The solution of equation (20) satisfying &/&7(O) = 0 is 

u = uo(x). (21) 

This says that the velocity must be uniform across the 
inner layer; in particular, u. can be identified as the 
centerline velocity. However, uo(x) cannot be de- 
termined before the solution for the outer layer has been 
obtained. With equations (21) and (1 l), the continuity 
equation (16) then gives 

i? = -$du,ldx) 

and equation (18) becomes 

(22) 

aT -duo aT a2T 
Uoax-Ydxay”=ay”Z (23) 

with the boundary conditions 

y=o, aiyay=o; j7=c0, T=o. (24) 

Finally, equation (19) becomes 

1 
m T djj = 1/(2u,). (25) 

0 

If it is supposed that u. were known, one can find a 

similarity solution for T. First, similarity variables are 
defined as 

T = A(x)N(ri), ri = m,(x) (26) 
where A and h, are, respectively, the scales of 
temperature and layer thickness. Then, by substituting 
these variables into the partial differential equation 

(23), requiring that it reduce to an ordinary differential 
equation, and using the integral condition (25) there 
follows 

h,(x) = 2[ J; u. dx]112/uo, 

A(x) = Muoh,) 

(27) 

(28) 
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and 

N” + 2(+V)’ = 0, (29) 

N’(0) = N(x ) == 0. 130) 

The solution of equations (29) and (30), which satisfies 
equation (19). is 

,v = e ‘;l’(nl’L). (31) 

The complete solution for the temperature, provided 
that the velocity u0 is known has. therefore, been found 

to be 

7 = c m;Q, #(rrl:z21,,/I i:) (32) 

where h,, is given by equation (27). Let us now turn to 
the determination of the velocity. 

3.2. Outer region 
Here. T = 0 so that the system. equations (8) ~1 IO), 

reduces to 

with the boundary conditions 

l,(O) = 0, u(2) = 1. (35) 

The boundary condition ?u/Zy(O) = 0 can no longer 
be satisfied. A replacement for this lost boundary 
condition can be found in a manner similar to that of 
Spalding and Cruddace [S] for the pure natural 
convection similarity plume. To begin, the leading 
terms of the inner-region momentum equation (17) (i.e. 
with terms oforder PI ’ omitted) are integrated across 
the inner layer from 0 to j, (fr being the value of Fat the 

edge of the layer) to yield 

= -PI “li’(2U,) (36) 

where equation (25) has been employed to obtain the 
last equality. Using c7u/?y(O) = 0, and then changing to 
outer variables and letting Pr + ‘x1 one obtains 

(c;U/?J~),~” = --l/(2&) (37) 

since v = j!Pr’:’ + 0. The required matching con- 

ditionjn the present case is simply to recognize that the 
function Q(X) defined on the inner region is also the 
centerline velocity for the outer problem. Equation (37) 
serves to complete the slate of boundary conditions for 
the outer velocity distribution. Equation (37) also 
serves as a forcing term in lieu of the temperature term 
which has disappeared in the momentum equation (34). 

The system, equations (33)_(35) and (37). does not 
admit a similarity solution, so that a numerical solution 
must be found, as will be described in Section 4. 
However, analytical solutions both for the inner and 
the outer regions can be found for small x. These will 
now be derived. 

For the inner region. the small-.\- velocity solutml:; F 
to zeroth order 

lio .= 1 1;s) 

and,with this.therefollowsfromecluat~c~nsrl7lar1d(;?! 

Ii , : 2-y: 2, ,T < t‘ b-2.:, [317x\)’ ‘I. ii’ij 

For the outer region, that is. for the veiocity. SQL 
proceed as follows : To first order. we assume a lo~c:li 
similarity solution for the velocity diKerence li 1. -+! 
that the stream function is given by 

I// = I+ B(u)K(;i. l-&ii 

_, 12 (411 

The requirements that the partial differential equation 
(34) reduces to an ordinary differential equation an(l 
that the boundary condition (37) hc fulfilled yield 
B = .x,so that thesystemofequations133) (35)andi37; 
becomes, to first order. 

K”‘+;;k”~~;k” = II. !-ii; 

K(0) == 0. K”(0) = i, k ! i,) =- 0. iAil 

Solving for K’. one obtains 

k’ :_ ;I+;; cJf(<,‘])+C I” (x”‘i I441 

where the error function is defined a~ 

The velocity is then found from equation (40) to be 

I, = <:l//!;.y = 1 + ,-’ 1 :A l&l 

and, in particular. the centerline val~~t: I 

UC, = I $ (\ XI’ 147; 

We note that by taking the Pv z- I limit in Afx.d‘~ 
[4] results for small x, his zeroth order solution for the 
temperature reduces to the present solution (39),and his 
frst order solution for the velocity reduces to that of 
equation (46). The foregoing solutions for small I are 
useful in giving the necessary starting values required 
by the numerical solution method to be described in 

Section 4. 
Solutions appropriate for the case s + / , that ih,. 

pure natural convection, have been obtained [5,6l. 
Results which are relevant for comparison purposes arc 
stated in the Appendix. 

1. NUMERICAL. METH00 

‘The boundary layer equations (8)-i IO) were solved 
by using the well established Patankir--Spalding 
method [7]. This method utilizes the normalized von 
Mises variable; that is, instead of the y-coordinate. a 
non-dimensional stream-function coordinate is used 

,’ ; 

(1) = lp/q,, $5 = ! u dv r4xj 
t’ 
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where r+!i, denotes the value of 4 at the edge of the 
boundary layer. The finite difference grid then spans the 
range x > 0,O < w < 1. In the x, w variables, the sys- 
tem of equations (SHlO) takes the form 

where d, is either u or T, I, = 1, IT = l/Pr, S, = T, 
ST = 0, and Ge is the dimensionless counterpart of 5,. 
The finite difference scheme adopted in the Patankar- 
Spalding method is a fully implicit marching scheme 
whose accuracy is second order in w (for grid Reynolds 
numbers less than about two) and first order in x. 

The continuity equation has dropped out of the 
system, but instead, the unknown function d$Jdx has 
appeared.Thisfunctionisameasureoftherateatwh~ch 
fluid is entrained into the plume, and it has to be 
determined as part of the solution by applying an 
additional constraint at the edge of the plume. 
Furthermore, the system of equations (SHIO) has a 
singularity at x = 0, so that the inte~ation has to be 
initiated at a very small value of x (xi, say) with values 
of the dependent variables obtained from an analytical 
solution. For a further discussion on the determination 
of d$,/dx and initial values, see ref. [S]. 

Starting values at xi = 1O-4 were obtained from 
equations (Al) and (AS) for Pr = 0.72 and 5, and from 
equation (46) for Pr = co. A uniform grid was used for 
o, and the number of grid points for the range 
0 < w < 1 was 35, The local step length in x was 
determined by incrementing $, by 1% ofits value at the 
preceding step. This procedure gave rise to about 1500 
points in the x-direction to cover the region of interest 
(lo-4 d x < 108). 

For Pr = ixj, there is a considerable simplification 
since only the equation for ti, equation (34), has to be 
solved by the finite difference method. The boundary 

condition (37) is linearized to yield 

(~~/~~)~ = - l/sop + %/2& (50) 

where ue is the current (unknown) value of the 
centerline velocity and uop is the value at the preceding 
step. When u0 at each x has been obtained, h,(x) was 
determined from equation (27) by trapezoidal rule 
integration and, with this, the temperature solution 
follows directly from equation (32). 

5. RESULTS AND DISCUSSION 

5.1. centerline velocity and ~ern~er~t~re 
One of the main characteristic features of the plume is 

its centerline velocity. The variation of the centerline 
velocity as a function of the vertical coordinate is 
presented in Fig. 1. The ordinate variable is the 
dimensionless velocity u0 = ti,/ri,,while x’j4is used on 
the abscissa in order to obtain a more compact 
presentation than would have occurred had x itself 
served as the abscissa variable. It may be noted that x 
not only measures the vertical distance above the line 
source, but it also serves as an index of the relative 
strengths of the forced and natural convection (i.e. 
x = Gr2/Re5). Thus, at small x (Re5 9 Gr’), the mixed 
convection how is dominated by forced convection, 
while natural convection plays the dominant role for 
large x (Gr’ % Re’). 

The figure conveys the ue vs x distributions for 
Prandtl numbers of 0.72, 5, and co (solid lines). Also 
appearing in the figure are dashed and dot-dashed lines 
which respectively represent the no vs x distributions 
for pure natural convection and pure forced 
convection. These lines may be regarded as asymptotes 
for the mixed convection solutions. The forced 
convection line (uO = 1) is applicable for all Prandtl 
numbers, while the natural convection line that is 
shown in the figure corresponds to Pr = m. The 
natural convection lines for the other Prandtl numbers 

- - - PURE FORCED CONVECTION 

--- PURE 
20 

NATURAL CONVECTION 

6 

UO 4 

X 
II4 

FIG. 1. Distribution of the plume centerline velocity. 
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have been omitted because their presence would have 
caused congestion and overlapping. It may be noted 
that since ug _ x w for pure natural convection, then, 
for the natural convection asymptote, u0 rr (x~‘~)~‘~. 

The intersections of the forced and natural 
convection asymptotes have been identified by arrows 
positioned just below the abscissa axis. The rightmost 
arrow corresponds to the intersection for the Pr = ;c. 

case that can be seen in the figure, while the other 
arrows are for the Pr = 5 and 0.72 intersections (right to 
left) which are not shown in the figure. 

Examination of Fig. 1 shows that the centerline 

velocity, initially equal to the forced convection value 
tiO = 1, increases with increasing distance from the line 
source of heat. The increase is due to the action of 
buoyancy. Further study of the figure reveals that, in 
effect, the ue vs x distribution for the mixed convection 
problem ‘rounds the corner’ of the corresponding 
envelope curve made up of the pure forced and natural 
convection asymptotes. In general, the envelope curve 
tends to underestimate the centerline velocity. The 
greatest deviation between the actual mixed convection 
curve and the envelope curve occurs at the x value at 
which the latter experiences its change of slope 
(indicated by the arrows in Fig. 1). The values of x 1!4 at 
which these maximum deviations occur are 1.09, 1.20, 
and 1.30, respectively for Pr = 0.72,5, and co. At these 

points, the respective envelope curves lie 31, 28, and 
26% below thecorrespondingmixedconvection curves. 

It is also ofinterest to inquire about the distance from 
the line source at which the ue distribution from the 

mixed convection solution, in effect, coincides with that 
for pure natural convection. A 2% approach is adopted 
here as the criterion for the defacto coincidence of the 
two solutions. The x values at which the 2”/:, approach is 

achieved are 5.8 x 103, 1.3 x 105, and 3.1 x 105, 
respectively for Pr = 0.72, 5, and x). Beyond these x 
values, u0 values for the mixed convection problem can 

be obtained to high accuracy from the pure natural 
convection solution. 

Attention is next turned to the variation of the 
centerhne temperature of the plume as a function of the 

vertical distance from the line source, as presented in 
Fig. 2. As for the centerline velocity, results for the 
centerline temperature are given for Pr = 0.725. and 

rx;. In addition, a complete envelope curve is shown ittr 
Pr = 0.72, and the natural convection asymptotes fat 
Pr = 5 and x are also included (complete envelope 
curves for these Prandtl numbers are not shown to 
preserve clarity). The break points in the envelope 
curves are indicated by arrows positioned at the top of 
the figure. respectively at x *‘4 = 3 17 1.94 and 1.37 for _ _ . 
Pr = 0.72, 5 and x 

It should be noted that theordinate variable include> 
certain powers of x and Pr in addition to the 
dimensionIess centerline temperature 7;). The choice of 
this ordinate group is motivated by the fact that 
T,(xiPr)’ ” = constant = 1/27r”’ in the limit as I ---t (i 
(pure forced convection). Thus, with 7;,(x/Pr)“z as the 
ordinate. all of the mixed convection curves tend to a 
common horizontal line (independent of Prandti 
number) for small X. Furthermore. in terms of this 
group, the natural convection asymptotes are of the 
form I;,(.x/Pr)‘J’ - (xj4) “‘* It may also he useful to 
note that 

‘I’(N!pr)‘:z = c( [((‘i--T )&](ReiYr)’ z. 

From Fig. 2, it can be seen that the centerline 
temperature decreases with increasing distance from 
the line source and that the decrease is more rapid as the 
plume progresses from forced convection dominance 
(small u) to natural convection dominance (large w). 

Also, the envelope curves tend to overestimate the 
centerline temperaturecompared with that given by the 
actual mixed convection solution, and this is just 
opposite to what was found for the centerline velocity. 
The greatest deviation between a mixed convection 
solution curve and its corresponding envelope curve 
occurs at the break point of the latter. For Pr = 0.725. 
and ,XI. the break-point values of the respective 

envelope curves are high by 24,23, and 2 I”:,. 
The approach of the centerline temperature for the 

mixed convection case to its natural convectron 
asymptote occurs at smaller values of .K as the Prandtl 
number increases, whichisjust opposite to the behavior 
of the centerline velocity. A 2:!; approach is achieved at 
x .=: 7.4 x 10”. 5.3 x lo’, and 3.1 x I@. respectively 

for Pr = 0.72, 5, and x. 
Before leaving this section, it IS appropriate tai 

compare the present ug and Y;, results with 

0.4 - 
Pr = 

N . 
--._ 0.2- 
r; 
\ 
x 

;ro O.l- 
-.-.- PURE FORCED CONVECTION 

- - - PURE NATURAL CONVECTION 
o.061- \ 

FIG. 2. Distribution of the plume centerline temperature. 
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corresponding results in the literature. As noted in the Totesttheaccuracyofequation(52),it wasemployed 
Introduction, Afzal[4] dealt with the case of Pr = 0.72. to evaluate u. over an extensive range of x for each of 
His graphical presentation for ue and TO could not be the three investigated Prandtl numbers. From this, it 
read with acceptable accuracy. Therefore, to enable a was found that the extreme error in the no provided by 
comparison, it was necessary to re-evaluate his series equation (52) was about 3%, thereby affirming the 
solution. utility of the algebraic representation. 

The comparison was made over the range from 
x = 25 to 108. The agreement of the ur, results from the 
two solutions was found to be in the 0.3-0.4% range, 
with the T,agreementrangingfromOto0.60/Thislevel 
of agreement is an affirmation of both methods of 
solution. 

A similar approach was employed for the centerline 
temperature distribution, yielding 

To(x/Prp2 = c/[ 1 + (cx*~i/,)i’m]” (54) 

where 

Consideration will now be given to the development 
of an algebraic representation for the centerline velocity 
and temperature results. The objectives of this 
development are to provide results for all gas and liquid 
Prandtl numbers (rather than for only a few discrete 
values) and to express the x-dependence algebraically 
(rather than graphically). In this regard, it is believed 
that an algebraic representation offers greater 
convenience and accuracy for application than does a 
graphical representation. 

c = 0.282, d = ~(O)/Pr”‘, m = 0.26 + 0.04/Pr0.’ 

(55) 

andd = 0.445,0.368 and 0.320 for Pr = 0.72,5, and co, 
with a more extensive tabulation available in ref. [9]. 
The extreme error in the results provided by equation 
(54), as determined by comparisons with the actual 
mixed convection solutions, is about 2%. Thus, the 
algebraic representation for To is highly accurate for all 
Prandtl numbers and x values. 

To begin the development, it is useful to note that for 
pure forced convection and pure natural convection 

5.2. Plume width 

Ug = 1, ue = x0.2F’(0) (51) 

respectively. If a = 1 and b = F’(O), then a u0 
representation which coincides with these small x and 
large x asymptotes can be written as 

The width of the plume and its variation with vertical 
distance from the line source is another important 
result. Two widths may be considered, one for the 
velocity field and the other for the temperature field. 

ue = [a”” +(bx”.2)“n]“. (52) 

For each ofthe threeinvestigated Prandtl numbers, the 
value of n was determined by equating the u0 from 
equation (52) to the numerically determined value for 
the mixed convection plume, with the matching 
performed at x corresponding to the condition 
A = bx’.‘. The thus-determined n values are very well 
represented by 

With respect to the velocity field, it should be noted 
that the presence of the line source creates a velocity 
distribution that is superposed atop the uniform forced 
convection approach flow u = 1. It is, therefore, 
appropriate to take account of this uniform 
‘background’ velocity in defining the plume width. The 
definition to be employed here is that the plume width 6 
corresponds to the dimensionless distance from the axis 
where 

n = 0.53 - 0.09/Pr0.5. (53) 

Equation (53) provides the ns needed in the evaluation 
of equation (52). Also, a = 1 for all Pr and b = F’(0) 

= 0.810, 0.860, and 0.934 for Pr = 0.72, 5, and co. 
Furthermore, an extensive tabulation of F’(0) vatues is 
provided by Fujii [9]. 

(u- l)/(U,- 1) = 0.05. (55) 

Since ue varies with x, so also will 6. In actuality, since 
the plume is symmetric about the axis, 6 is half the 
overall width of the plume. 

The variation of 6 with x is plotted in Fig. 3 for 
Pr = 0.72, 5, and co. The ordinate variable is 6/xr12, 
where the factor xii2 is introduced because 6 _ xfiZ 
for small x. Also, in terms of dimensional 

1:’ := 
0.6 - 

I 
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FIG. 3. Half-width of the plume velocity profile. 



440 S. E. HAALAW and E. M. SIJAKKC~V 

quantities, 6/x’!’ = (8/f)Re”2. As before, .K’,‘~ is 
used as the abscissa variable to obtain a compact 
presentation. 

As expected, the plume width increases with .Y. The 
Y’.” increase, which holds for small ?c, gives way to a 
somewhat slower increase at larger x. Thus, if.\-, and .Y, 
respectively correspond to x = IO8 and lo”, then 
ti,,ff , - 45while(s,lx-,)I;’ = t~.At]ar~ex,itappears 
that 6 takes on the s dependence predicted by the pure 

natural convection solution, i.e. ci!.*-‘!* _ .y 0 ’ 

However> thenumericalvaluesof6do notCoincidewith 
those for pure natural convection because the portion 
ofthe velocity profile that is adjacent to the lateral edge 
of the plume is inffuenced by the forced convection 
ba~k~r{~und velocity. 

At any given x. the plume width decreases with 
increasing Prandtl number. The sensitivity of 6 to Pr is 
small for intermediate and large Prandti numbers (i.e. 
between 5 and -x ). Between Pr = 0.7:! and 5. there is 

about a 25”,, decrease in 6. 
At this point, it is appropriate briefly to discuss 

Afzal’s results [43 for the plume width. His width b* was 

dclined as 

which resembles the dispIacement thickness of a 
boundary layer. The feature of equation (56) which 
appears to be inappropriate for the present problem is 
the use of UZ, as the characteristic velocity of the plume 
(i.e. as the multiplier of s*). A more reasonable 
characteristic velocity would be Go. In view of this 

objection, it is not believed that the $* results of Afza] 
(which correspond to his single Prandti number of0.72) 
are physical]y meaningful. 

The thermal width S.,, of the plume will now be 
considered. It will be defined as the dimensionless 

distance from the plume axis where 

T/T, = 0.05. (571 

The &,. values determined according to this definition 
are plotted in Fig. 4 in the form ~L?.r(Pr/x)“~ vs .Y”~ 

where fi,(Pr/.x) I,* = 346asx+OforailPr.Aiso,itmay 

be noted that h,,.(Pr!s) . ‘la = (6.,./.Y)(RePr)“2. 

As was also true for S, the thermal width zi, increases 
at first ass ’ :’ . with a somewhat slower increase at farger 
.‘c. In addition, the thermal width decreases with the 
Prandtl number: the decrease going as &’ ‘7 at small .\ 
and slightly more rapidly at larger .Y, From ;i 
comparison of Figs. 3 and 4. it is seen that ‘5, ‘Y r! <or 
Pr = 0.72, but that <ST < ii for higher Prandtl number?, 
At large Prandti numbers. the thermal width of the 
plume is much smaller than the velocity width 

5.3. Velocity und trmperuturr prc$/e;i 
7’heevoiutionofthevelocityprofilcinthcplume~~itt~ 

increasing vertical distance from the line source i+ 
illustrated in Fig. S. The figure is a composite of four 
graphs,each ofwhich corresponds to a specific value 01 
?I, namety. .Y = IO’, 104. 5 x !05. and 10’. In each 
graph, the dimensionless velocity U( -: tj;~i x ) is plotted 
as a function of y;w’~* = (j../%)Re’ ‘. T)f particular note 

is that the range ofthe ordinate has been approximatclt 
doubled from graph to graph in order to accommodate 
the increase in velocity that a~~ornp~l~~i~s an increase tn 
the vertical distance from the line source. The abscissa 
range has brcn maintained the sarnc in all graphs b! 
inclusion of the factor I/.Y”’ in the abscissa variable. 

The velocity profiles for the various Prandt] number> 
display characteristic shapes. t or 211 cases, :hc 
maximu~l velocity is attained at the axis (x 7 0) and, as 
I’ increases. the vetocity decreases toward 24 = t F cx 

kr -c x, the velocity profile is flat (i c. ilr/c’x = 0) at the 
axis, but it is evident by comparing the curves for I’/, 
= 0.72 and 5 that the extent of the flat region diminishes 
with increasing Prandtl number. For the Pr -= x, case, 
?tr:c’y # 0 at 3’ = 0 [see equation 137)]. A\ ;1 
consequence of this, the inflection point that appears in 
the curves for i’u < Y_, disappears when I’r := -x 

Away from the immediate neighborhood of the ax14. 
the curkes arc ordered from upper to lower \+itli 
increasing Prandtl number. Howcvcr,. owing tc, the 
aforementioned tendency toward greater near-axi& 
~atteningat lower Prandti numbers. the ordering of the 
curves is reversed at and near the ‘txis. 

As implied by the change in the ordinate range. there 
isasignificant increasein thevelocitymagnitudewlth Y. 
reflectins the role of the buoyancy. There ic also :\ 

6 r----- - -- 
~_ .^ --- 

FIG. 4. Half-width of the plume temperature profile. 
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FIG. 5. Plume velocity profiles. 

change in the shape of the curves. Those for small x tend 
to be relatively flat, while for larger x the curves are 
more peaked. 

Some consideration was given to an alternative 

presentation in which u/u0 was the ordinate variable. 
Owing to the just-mentioned change in shape of the 
curves, the u/u0 representation did little to unify the 
results and, therefore, was not used. 

The situation is quite different for the temperature 
profiles, as witnessed by Fig. 6. Here, by plotting T/T, 

vs y/6,, a profile representation was obtained that is 
nearly independent of both x and Pr. The virtual x- 

independence of the normalized profiles is illustrated in 
the upper part of Fig. 6 for Pr = 0.72, but a similar 
finding pertains to the other Prandtl numbers. In fact, 
the curves are even closer together for Pr = 5 and 
collapse to a single curve for Pr = co. Furthermore, in 
the lower part of Fig. 6, the curves for a fixed x are seen 

to show only slight dependence on the Prandtl number. 
It was verified that a similar Prandtl number 
dependence occurs at all x. 

The temperature profiles were able to be correlated 
because they all have common shapes. In particular, all 

attain a flat maximum (aT/ay = 0) at y = 0, display an 
off-axis inflection, and go to zero at large y. These 
characteristics were not possessed by all the velocity 
profiles, with the result that they could not be 

successfully correlated, as were the temperature 
profiles. 

6. CONCLUDING REMARKS 

Both numerical and analytical methods have been 

employed to determine the velocity and temperature 
fields in themixedconvection plume above a horizontal 
line source of heat situated in a uniform, vertical forced 

FIG. 6. Plume temperature profiles. 
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convection approach flow. The sequence of the work 
was first to obtain solutions for several specific Prandtl 
numbers in the range 0.72 d Pr < cc: and then to 
generalize the results for certain key quantities to make 

them applicable to all Prandtl numbers in this range, as 
well as for all vertical distances above the line source. 

In general, at relatively small distances above the 
source, the forced convection nature of the approach 
flow plays a dominant role. At larger distances, 
however, buoyancy asserts itself more and more 
strongly and, at sufficiently large distances, the plume 
resembles that for pure natural convection. 

In presenting the results for the centerline velocity 
and temperature of the mixed convection plume as a 
function of the distance from the line source, the forced 
convection and natural convection asymptotes were 

employed to construct an envelope curve for the 
corresponding mixed convection curve. For the 
centerline velocity, the envelope curve bounds the 
mixed convection curve from below, with a maximum 
deviation of about 3O:d. On the other hand, the 
envelope curve for the centerline temperature falls 
above the mixed convection curve by, at most, 25%. The 
distance above the line source at which the mixed 
convection plume approaches to within a fixed 
tolerance (e.g. 2%) of the natural convection plume has 
been identified and is given in the paper for the various 
Prandtl numbers. 

Generalization of the results for the centerline 

velocity and temperature to apply to all Prandtl 
numbers and distances from the line source is 

respectively accomplished by equations (52) and (53) 
and by equations (54) and (55). These algebraic 

equations were found to be accurate to better than 3”/, 
for the velocity and 2% for the temperature. 

The width of the plume was defined in terms of the 
distance from the axis at which the velocity and 

temperature had declined to 5% of the centerline-to- 
ambient difference. Both the velocity and thermal 

widths, fi and 6,, respectively, increased with distance 
from the line source, but at a slower rate at larger 
distances. For high Prandtl numbers, 6.r < 6. 

The velocity profiles were quite flat for small 
distances above the line source and became more 

peaked at greater distances. The high-Pr profiles were 
of a somewhat different character than those for the 

other Prandtl numbers. On the other hand, the 

temperature profiles were generally bell-shaped at all 

vertical distances and Prandtl numbers. 
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APPENDIX 

SOLUTIONS FOR VERY SMALL AND VERY LARGE \ 

When x is close to zero, we have the pure forced convectmn 
case where 

u- 1. t’ 1 0 (AII 

so that the temperature equation (10) reduces to the simple 
heat equation 

with the conditions 

?T,‘?y(O) = T(‘YJ) = 0. 

s 

1, 
+= UT dy. 

0 

(A31 

(A41 

A similarity solution of this system is found. in a 
straightforward manner [l], to be in our variables 

T = (Pr/4nx)“’ exp( - JI’ Pri4x). (A5) 

For very large x, U, --) a, so that Urn/U0 + 0. Hence, the 
appropriate boundary condition for the velocity at infinity 
now becomes u(a) = 0. This problem, therefore, reduces to 
the pure natural convection case for which the most complete 
and accurate solutions can be found in Fujii et al. [9]. Simi- 
larity solutions for this problem are obtained using the follow- 
ing transformation of variables 

U = (vG~)“~.+~F’(~). I.46r 

ii - T. = O,(v*/G)‘:‘f ’ ‘H(r/), (A71 

‘1 = y/h, h = (vz/G)’ s,r ’ iAgi 

where G is a “reduced” gravitational acceleration given bj 

G = g/N, = g/IQ/p<,?. iA9) 

The functions F’ and H are found from the solution of the 
following system of ordinary differential equations : 

REFERENCES 

W. W. Wood, Free and forced convection from fine hot 
wires, J. Fluid Mech. 55,419-438 (1972). 
P. Wesseling, An asymptotic solution for slightly buoyant 
plume, J. Fluid Me& 70, 81-87 (1974). 

F” +(3/5)FF”-(1/5)F’* + H = 0. 

H’+(3/5)PrFH = 0, 
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of Fujii et al. [9], and a boundary condition H’(0) = 0, which 
now is seen to be automatically satisfied because F(0) = 0, has 
been dropped. 

When Pr -+ cc, we have the lowest order (i.e. order Pr) from 

161 

H = (3Pr/107tao)“2 exp[( - 3a,Pr/lO)$] 

where aa = F’(0). In terms of the non-dimensional variables 
defined by equations (7) and (A7), this becomes 

Tx~‘~P~~ “’ = (3/10na,)“* exp[( - 3a,Pr/10)y2/x4’5]. 

(A15) 

The non-dimensional stream function F(r)) is now found from 

F”’ + (3/5)FF” - (1/5)F’2 = 0, 

F(0) = 0, F”(0) = - 1/[2F’(O)], F’(co) = 0. 
(A16) 

The numerical solution ofequations (A16) gives, in particular, 
a, = F’(0) = 0.9336. 

It is of interest to show that equation (A15) can be obtained 
from the solution given in Section 3. First, we note that the 
centerline velocity in the non-dimensional variables defined 
by equation (7) is 

n = a x’15 0 0 (A17) 

Substitution of equation (A17) into equation (27) gives 

h, = (10/3a,)“%2’5. (A18) 

Then, by substitution of equations (15), (A17), and (A18) into 

equation (32), equation (A15) emerges. However, equatiou 
(A15) can only be an asymptote to the mixed convection 
problem because equation (A17) is only valid for very large x, 
so that equation (A18), which was obtained by integration of 
the velocity from zero to x, might not be too accurate for other 
than very large x. 

The above solutions for extreme values ofx give asymptotes 
for the mixed convection problem. We have for the centerline 
values 

x+0 

ua = 1, (A19) 

T&/Pr)“z = (1/4ny, WO) 

x-+cc 

U. = x”5F’(0), 6421) 

To(x/Pr)“’ = x- 1i10H(0)/Pr”2 (.422) 

where the necessary constants are given in Table 1 

Table 1. Constants for equations (A21) and (A22) 

Pr 
0.72 5 co 

F’(O) 0.8096 0.8597 0.9336 
H(O)/Pr”’ 0.4447 0.3679 0.3198 

PANACHE DE CONVECTION MIXTE AU DESSUS DUNE SOURCE LINEAIRE 
HORIZONTALE SITUEE DANS UN ECOULEMENT FORCE 

Resume-On utilise des techniques analytiques et numiriques pour resoudre les champs de vitesse et de 
temperature dans un panache bidimensionnel de convection mixte, pour un nombre de Prandtl variant de 0,72 
jusqu’a l’infini. La methode de dtveloppement interne et externe est utilisec pour le cas Pr = co, tandis que la 
mithode parabolique, aux differences finies, foumit les solutions pour les autres nombres de Prandtl. En 
general, le panache se dbploie, quand augmente la distance a la source lineaire, depuis la convection for&e 
jusqu’a ce qui ressemble a la convection naturelle pure. Les variations de vitesse et de temperature sur la ligne 
des centres avec la distance a la source sont bordees par des courbes enveloppes construites a partir des 
asymptotes pour la convection for&e pure et la convection naturelle. Des relations algebraiques tres precises, 
valables pour tous les nombres de Prandtl et toutes les distances, sont developpees pour generaliser les 
resultats obtenus pour les nombres de Prandtl discrets. La largeur du panache augmente avec la distance a la 
source, mais d’autant moins vite que la distance augmente. Les formes des profils de vitesse changent avec la 
distance et le nombre de Prandtl, tandis que tous les profils de temperature posside la forme commune en 

clothe. 

DIE AUFTRIEBSTR~MUNC~ BEI GEMISCHTER KONVEKTION UBER EINER 
WAAGERECHTEN LINIENQUELLE BE1 ANSTROMUNG DURCH ERZWUNGENE 

KONVEKTION 

Zusammenfassung-Es wurden sowohl analytische als such numerische Verfahren angewendet, urn 
Geschwindigkeits- und Temperaturfelder der zweidimensionalen gemischten Auftriebsstriimung fur Prandtl- 
Zahlen von 0,72 bis unendlich zu berechnen. Fur den Fall Pr = cc wurde die Methode der inneren und Bulleren 
Reihenentwicklung angewendet, wlhrend fiir die anderen Prandtl-Zahlen ein parabolisches finites 
Differenzenverfahren die Liisungen lieferte. Prinzipiell wurde festgestellt, dal.3 sich die Auftriebsstriimung mit 
zunehmender Entfernung von der Linienquelle in ihrem Charakter von der fur erzwungene Konvektion 
typischen Form zu einer Form hin entwickelt, die bei reiner freier Konvektion auftritt. Die Anderungen von 
Geschwindigkeit und Temperatur an der zentralen Achse mit der Entfernung von der Linienquelle wurden 
durch Hiillkurven eingegrenzt, die aus den Asymptoten fur reine erzwungene und reine freie Konvektion 
konstruiert wurden. AuBerst genaue algebraische Gleichungen fur alle Prandtl-Zahlen und alle Entfernungen 
von der Linienquelle wurden hergeleitet, urn die Ergebnisse, die fur die verschiedenen diskreten Prandtl- 
Zahlen erhalten worden waren, zu verallgemeinern. Die Breite des Auftriebsgebietes vergroBerte sich mit dem 
Abstand von der Quelle, jedoch mit zunehmender Entfernung langsamer. Die Gestalt der 
Geschwindigkeitsprofile lnderte sich sowohl mit der Entfernung als such mit der Prandtl-Zahl, die 

Temperaturprofile zeigten dagegen alle eine gemeinsame glockenartige Form. 
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CMEIIIAHHAIl KOHBEKLJMR B nOfl%EMHOM TErIEHMM HAA I-OPM3OHTAJlbHblM 
JIMHEtiHbIM MCTOYHMKOM, OFiTEKAEMbIM HA6ErAIOUMM nOTOKOM C 

BbIHYXflEHHOn KOHBEKUMEfl 

AHHOT~~HR-AH~~~TWY~CK~MM B WCneHHbIMM M~TO~~MM no.rIyqe~bI PetIleHm ;LUI IIoleii CK~)~OC‘I &f 

A TeMIIepaTypbI B ,WyMepHOti CTpye B PeWIMe CMeLUaHHOfi KOHBeKIIHU B ,WaIIa30HC H?WeHef<MR 

YHCen npaHLITJIR 01 0,72 +!I0 6eCKOHeqHOCTA. &In CJlyga~ f’r = Z WC”OJblOBaJICR MeT03 ~“4 rpC,,wiX 

lil BHeUIHHX paZUIO~eH&ifi, a am npyrax 3Haqemiti wcna IIpaHarnH napa60.rIuvecKMR w I 0,~ 
KOHeqHbIX pa3HOCTeA. B ue!lOM HaBneHO. VTO no Mepe yfia;IeHm 0’1 .nIIHeI?HOrO MCTOwMKa YapaKrep 

CrpyH HSMeHIIeTCII OT peW,Ma TeVeHNR YiiCTO BbIHyW(JeHHOA KOHBeKI,tiM ,‘,O PemliW eC ICCI WHttOii 

KOHBCKUMM. M3MeHeHHR CKOPOCTM M TeMIIepaTypbI BiIO.‘Ib OCN IIO,m,eMHOfi CTpyM 110 Vepe \I,T&IeHIUl 

OT JIHHefiHOrO ACTO’IHSiKa OI,HCbIBaIOTCII KPIIBLIMM. IIOCTpOeHHbIMH “” aCMMIITOTa,M I.2 H 9 MC I <: 

BbIHyWleHHOti M ‘IHCTO eCTeCTBeHHOfi KOHBeKIlHA. c 1Ie;IbW 0606IlIeHHfl pe3y:IbTa IOH. iI0.1I)‘leHHbI\ 

JInll pa3JWHbIX JIHCKpeTHbIX 3HaYeHd ‘,NCJIa npaHnT_W. IIO:IyWHbI BCCbMa TOYHble Ure6pWFIeCKHe 

COOTHOILIeHHR, CIIpaBeNIHBbIe LIn8 BCeX ‘IHCeJI npaHnTnR U BCeX PaCClORHHfi OT JIHHefiHOI 0 MCTOVHHKil 

MHpHHa IIODeMHOfi CTpyH yBenWHBaeTCZ4 C paCCTO54HHCM OT HCIO’IHHKa. IIpWleM Tehl ‘.IC:I:leHHee. 

veM aanbule OT Hero. Ban npo$uneG CKO~OCTM HweHsIeTm ts GIBHCHMOCTM KaK OT pacc-ron~un. 

TaK H OT ‘IMCJIa npaHLI7.W. B TO BpeM9 KaK IIpO@UIi4 TeM”epaT\ip IiMelOI 06bIqHyIO KOIIOKOJIO~pa?)(4I~~ 

QOPUY 


