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Abstract—Both analytical and numerical techniques were employed to solve for the velocity and temperature
fields in a two-dimensional mixed convection plume for the Prandtl number range from 0.72 to infinity. The
method of inner and outer expansions was used for the Pr = oo case while a parabolic, finite-difference method
yielded the solutions for the other Prandtl numbers. In general, the plume was found to evolve with increasing
distance from the line source from one with a basically forced convection character to one which resembles that
for pure natural convection. The centerline velocity and temperature variations with distance from the line
source were bounded by envelope curves constructed from the asymptotes for pure forced and pure natural
convection. Highly accurate algebraic relations valid for all Prandtl numbers and all distances above the line
source were developed to generalize the results obtained for the various discrete Prandtl numbers. The plume
width increased with distance from the source, but at a slower rate at greater distances. The shapes of the
velocity profiles changed both with distance and Prandtl number, whereas all temperature profiles displayed a
common bell-like shape.

NOMENCLATURE

A, x-portion of T, equation (26);

a, constant, equal to 1.0;

constant, equal to F'(0);

B, x-portion of ¥, equation (40);

cn constant, equal to 0.282;

specific heat ;

d, constant, equal to H(0)/Pr'/?;

F, velocity similarity variable, equation (A6);
G, gravitational acceleration group, gfQ/pc,v;
Gr,  Grashof number, gf8,;x " 3/v?;

g, acceleration of gravity;

H, temperature similarity variable, equation
(AT);

h, natural convection plume width scale,
equation (A8);

h.,  plume width scale, equation (26);
K, {-portion of i, equation (40);
L, characteristic length, a3 /[v(gf0,)*];

m, exponent in equation (54);
N,  f-portion of T, equation (26);
n, exponent in equation (52);

Pr, Prandtl number;
0, rate of heat input at line source;
R, Reynolds number, (., L/v)'?;
Re,  Reynolds number, u,x/v;
T, dimensionless temperature, equation (7a);
T, temperature;
,v, dimensionless velocities, equation (7a);
, U, velocity components;
dimensionless coordinates, equation (7b);
, coordinates.

* On leave from The Norwegian Institute of Technology, N-
7034, Trondheim-NTH, Norway.
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Greek symbols

B, coefficient of thermal expansion;

é, dimensionless velocity profile half-width ;

07,  dimensionless temperature profile half-
width;

L, similarity variable, equation (41);

7, similarity variable, equation (A8);

7, similarity variable, equation (26);

81, acharacteristic temperature, Q/pc,v;

v, kinematic viscosity ;

0, density;

Y, dimensionless stream function, YyR/i, L;

v, stream function ;

, transverse coordinate for numerical compu-

tation, Y/ if..

Subscripts
e, edge of boundary layer;
0, centerline;;
0, free stream.
Superscripts
~ inner region variable ;

5 dimensional quantity.

1. INTRODUCTION

THE MIXED convection plume due to a horizontal line
source of heat (or mass) situated in a uniform vertical
flow is of interest in several engineering applications.
These include, for example, hot-wire and hot-film
anemometry, thermal pollution, and dispersion of
pollutants (i.e. dispersion of mass). Furthermore, these
applications may encompass heat or mass transfer in a
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variety of fluids, so that the relevant range of the
Prandtl or Schmidt number may extend from about 0.7
to several thousand. The objective of this investigation
is to obtain information about the plume velocity and
temperature fields over the range 0.72 < Pr < oc.

The physical processes which occur in the plume are
such that, at very high Prandtl numbers, the velocity
field is very much broader than the temperature field.
For this situation, it is advantageous to obtain
solutions by employing the method of inner and outer
expansions. This method was used in the paper to solve
the Pr= o case. In this connection, it is well
established that for natural convection boundary layer
flows, solutions for Pr = = provide accurate results for
a wide range of finite Prandtl numbers. Solutions for
other Prandtl numbers were obtained numerically by a
parabolic, fully implicit, finite-difference method.

Algebraic generalizations of the results for the
centerline velocity and temperature variations with
vertical distance from the line source were developed.
These algebraic representations yield highly accurate
results for all Prandtl numbersin the investigated range
and for all vertical distances. The graphical
presentation of results encompassed the centerline
velocity and temperature distributions, the velocity
and thermal widths of the plume, and representative
velocity and temperature profiles.

Inconsidering the available literature, itisrelevant to
note that a mixed convection plume undergoes an
evolution with increasing vertical distance from the line
source. The evolution starts with a near-field flow
where forced convection is dominant, passes through a
regime where buoyancy and forced convection are of
comparable magnitude, and finally emerges as a far-
field flow where natural convection is dominant. The
near-field flow (i.e. a weakly buoyant plume) has been
studied [ 1-3]. Of these, ref. [3] also considered the far-
field flow. A complete solution of the mixed convection
problem has been given for a Prandtl number of 0.72
[4].

Afzal [4] solved the problem in terms of two
coordinate expansions: a direct coordinate expansion
for a weakly buoyant plume (i.e. applicable to the near
field), and an inverse coordinate expansion for a
strongly buoyant plume (i.c. applicable to the far field).
It was shown, however, that if the series for the weakly
buoyant plume is suitably transformed, it can describe
very accurately the solution in the entire domain of the
flow. Afzal's solution method, even though of
considerable interest due to the use of sophisticated
techniques for series manipulation to improve the
accuracy. still requires a considerable amount of
numerical work to find the solution of a large number of
interrelated ordinary differential equations. In fact, the
amount of required numerical work may well exceed
that needed for a direct numerical solution of the
problem.

Numerical solutions in the limit Pr — oo for the pure
natural convection case have been obtained by
Spalding and Cruddace [5] and by Kuiken and Rotem

S. E. HAaLAND and E. M. SPARROW

[6]. For forced convection dominant flows, analytical
series solutions are available [4], which show the
Prandtl number dependence. However, the limit as
Pr — «c does not appear to have been worked out for
the mixed convection plume.

In the presentation that follows. the governing
equations are first formulated in general, after which
the high Prandtl number solution is developed
(including a closed-form, near-field solution). This is
followed by a description of the numerical finite
difference method. The results are then presented and
discussed and, finally, the key findings are summarized.

2. GOVERNING EQUATIONS

Let us consider the mixed-convection plume above a
2-dim. horizontal line source of heat situated in a
vertical stream that approaches the line source from
below with a uniform velocity. The boundary layer

equations for this flow, using the Boussinesq
approximation, are
ou  0b
o - = 0, { 1 }
ox &y
N T 8% S
U+ 0 = vy + glT T, ) {2}
ox cy éy

T
20 3

oT T
0% ay  Pr ¢yt

u

Here, x is the vertical coordinate and y is normal to it.
The line source is situated at the origin of coordinates,
x = j = 0. (The z coordinate is horizontal and lies
along the line source.) The velocity and temperature
distributions must be symmetrical with respect to the
vertical axis, and they must take on the free-stream
values outside the plume. Thus, we have the following
boundary conditions:

V=0, 0=0u/dy=7_T/dy =0, (4)

-, =4, T=T, (5)

~

In addition, an integral condition can be derived
which relates the dependent variables to the constant
rate of heat input Q at the line source. First, the energy
equation (3)is integrated with respect to j to yield, after
use of equations (4) and (5),

--i WT—T,)dy=0.

dx }_.,
This expresses the fact that since there are no sources or
sinks of energy anywhere in the flow for x > 0, the
energy transported through each plane X = constant is
a constant which must be equal to the rate at which
energy is released by the source, @, at £ = 0. Therefore,

Q = pc, JA

wW(T—T,) dy. (6}
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The governing equations are made non-dimensional
by introducing dimensionless variables defined by

@=1it u, v=a,0/R, T—T,=(0;/RT, (7a)
%=1Lx, y=Ly/R, R=(@,LMW'" (7b)
0r = Qfpc,v), L =a%/[v(gh0r)*]. (70)

The respective choices of /R and L as the
characteristic temperature and length, as given by
equations (7), were motivated by the fact that they
render, respectively, the integral condition (6) and the
momentum equation (2) free of parameters. We may
note that the present choice of Lis possible only because
there is no physical length scale in the problem. By
substituting equations (7) into equations (1}-6), we
obtain

ou Ov
—+—=0, 8
O0x + dy ®)
du ou u
—+v—=-—+T, 9
“ox v@y oy? + ©)
oT oT 1 9*T
— tr—=—— 10
u6x+vé’y Pr 9y? (10
y=0, v=20u/ldy=0T/dy=0, (1
y=w, u=1, T=0, (12)
x =0, f uTdy = 1/2. (13)
0

We may also note that the dimensionless streamwise
coordinate x is related to the Reynolds number
Re = i %/v and the Grashof number Gr = gf6,%3/v?
in the following manner :

x = %/L = Gr*/Re>. (14)

The solutions of the system equations (8)(13) for
very small x (pure forced convection) and very large x
(pure natural convection) are well known. Therefore,
they need not be derived in detail. They will, however,
be stated in the Appendix because they serve as limits
for the present mixed convection solution. A complete
solution for arbitrary x will be found by a finite
difference technique as will be described in Section 4;
but first, in the next section, we will study the limit as
Pr — w. Previous experience with natural convection
boundary layers has shown that the Pr — oo solution
applies with good accuracy for a wide range of finite
Prandtl numbers.

3. HIGH PRANDTL NUMBER LIMIT

For high Prandtl numbers, we can divide the region
of interest into two layers, (i) the inner region (adjacent
to the symmetry axis) where T # 0 and (ii) the outer
region where T = 0. It is known that as the Prandtl
number increases the inner region gets increasingly
narrow, and in the limit Pr — oo, the thickness of this
layer becomes zero.

3.1. Inner region
We introduce stretched variables as follows:

§=Pr'?y, §=Pri%, T=PpPr 1?T. (15

The stretching of y renders the width of the inner layer
of order unity. Insertion of equations (15) into
equations (8)+(10) and (13) gives

ou 0P

HLP o, 16

FeRIFT (16)
1 ou ou 0%u o
s iy, 17
Pr[”ax”ay] F (17

(18)

(19)

Letting Pr — oo, equation (17) becomes, to zeroth
order,

3*u/oy? = 0. (20)
The solution of equation (20) satisfying du/070) = O is
u = ug(x). (21

This says that the velocity must be uniform across the
inner layer; in particular, u, can be identified as the
centerline velocity. However, uy(x) cannot be de-
termined before the solution for the outer layer has been
obtained. With equations (21) and (11), the continuity
equation (16) then gives

7 = —j(du,/dx) (22)
and equation (18) becomes
aT duy, 6T T
— == 23
“ox TVdx o5 o &)
with the boundary conditions
§=0, 0T/0j=0; =0, T=0. (249
Finally, equation (19) becomes
J T dy = 1/Quy,). (25)
0

If it is supposed that u, were known, one can find a
similarity solution for 7' First, similarity variables are
defined as

T = AON@), 7 = j/h(x) (26)

where A and h, are, respectively, the scales of
temperature and layer thickness. Then, by substituting
these variables into the partial differential equation
(23), requiring that it reduce to an ordinary differential
equation, and using the integral condition (25), there

follows
X 1/2
ho(x) = ZI:J Uy dx] /uo,
o

A(x) = 1/(uohs,)

27

28
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and
N"+2(NY = 0.
N'(0) = N(=c) = 0.

(29)

{30)

The solution of equations (29) and (30), which satisfies
equation (19), is

N =e '), 30

The complete solution for the temperature, provided

that the velocity u, is known has, therefore, been found
to be

T=c it uh ) {32)

where h_ is given by equation (27). Let us now turn to
the determination of the velocity.

3.2. Outer region
Here, T = 0 so that the system. equations (8)}-(10),
reduces to

oy 1l
ot = 0, (33)
o0y
cu du  u ,
U + v = - (34)
x cy vt
with the boundary conditions
v(0) =0, wu(cc)=1 (35)

The boundary condition éu/éy(0) = 0 can no longer
be satisfied. A replacement for this lost boundary
condition can be found in a manner similar to that of
Spalding and Cruddace [5] for the pure natural
convection similarity plume. To begin, the leading
terms of the inner-region momentum equation (17) (i.c.
with terms of order Pr ! omitted) are integrated across
the inner layer from O to j, (7, being the value of ¥ at the
edge of the layer) to yield

Ve
(0u/05)s, —(Qu/§)y = —Pr ' J T dy

9}

= —Pr Y2 (2u) (36)

where equation (25) has been employed to obtain the
last equality. Using du/@7(0) = 0, and then changing to
outer variables and letting Pr — oc, one obtains

(Cu/iy)y—o = ~— 1/(2uy) (37)

since v = §/Pr'? - 0. The required matching con-
dition in the present case is simply to recognize that the
function uy(x) defined on the inner region is also the
centerline velocity for the outer problem. Equation (37)
serves to complete the slate of boundary conditions for
the outer velocity distribution. Equation (37) also
serves as a forcing term in lieu of the temperature term
which has disappeared in the momentum equation (34).

The system, equations (33)-35) and (37). does not
admit a similarity solution, so that a numerical solution
must be found, as will be described in Section 4.
However, analytical solutions both for the inner and
the outer regions can be found for small x. These will
now be derived.
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3.3. Solutions for small x
For the inner region, the small-x velocity solution is
to zeroth order

uy = 1 138}

and, with this, there follows from equations (27)and (32}

2 F

I, 22 T =7 2t L

{39

For the outer region, that is, for the velocity, we
proceed as follows: To first order, we assume a local
similarity solution for the velocity difference u - 1. so
that the stream function is given by

W= y+ Bx)K{h. {40}

1.2

J=opix {4t

The requirements that the partial differential equation
(34) reduces to an ordinary differential equation and
that the boundary condition (37) be fulfilled yicld
B = x,sothat the system ofequations (33}-{35)and (37}
becomes, to first order.

K"+ 3K =K = 1. 42
K(O)=0, K'(0)y= —1 Kita)=0 43
Solving for K', one obtains
K' = =350 erf({2)+0 - hamt?y (44)
where the error function is defined as
erf(y) = (2/n' %) | e ¢ dz {45}

The velocity is then found from equation (40) to be

U= aP/iy = L+x"7K {46)
and, in particular. the centerline value 13
Uy = 1+ (xm'" (47

We note that by taking the Pr = »r limit in Afzals
[47 results for small x, his zeroth order solution for the
temperature reduces to the present solution (39), and his
first order solution for the velocity reduces to that of
equation (46). The foregoing solutions for small x are
useful in giving the necessary starting values required
by the numerical solution method to be described in
Section 4.

Solutions appropriate for the case x — =, that is,
pure natural convection, have been obtained [5,6].
Results which are relevant for comparison purposes are
stated in the Appendix.

4. NUMERICAL METHOD

The boundary layer equations (8)-(10) were solved
by using the well established Patankar--Spalding
method [7]. This method utilizes the normalized von
Mises variable; that is, instead of the y-coordinate, a
non-dimensional stream-function coordinate is used

3

=M. W= J i dy 148)
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where . denotes the value of ¢ at the edge of the
boundary layer. The finite difference grid then spansthe
range x > 0,0 < @ < 1. In the x, o variables, the sys-
tem of equations (8)-(10) takes the form

op _ dv. 99 _

‘/’eﬁ” dx 6w

(7 o
- [rqs(u/we)ég] + (0 /u)S,
(49)

where ¢ is eitherwor T, T, =1, T = 1/Pr, S, =T,
S, =0, and ¥, is the dimensionless counterpart of /..
The finite difference scheme adopted in the Patankar—
Spalding method is a fully implicit marching scheme
whose accuracy is second order in o (for grid Reynolds
numbers less than about two) and first order in x.

The continuity equation has dropped out of the
system, but instead, the unknown function dif_/dx has
appeared. This functionis ameasureof therate at which
fluid is entrained into the plume, and it has to be
determined as part of the solution by applying an
additional constraint at the edge of the plume.
Furthermore, the system of equations (8}-{10) has a
singularity at x = 0, so that the integration has to be
initiated at a very small value of x (x;, say) with values
of the dependent variables obtained from an analytical
solution. For a further discussion on the determination
of di./dx and initial values, see ref. [8].

Starting values at x; = 107* were obtained from
equations (A1) and (A3) for Pr = 0.72 and 5, and from
equation (46) for Pr = oo. A uniform grid was used for
w, and the number of grid points for the range
0 <w=<1 was 35 The local step length in x was
determined by incrementing ¥, by 19 of its value at the
preceding step. This procgdure gave rise to about 1500
points in the x-direction to cover the region of interest
(107* < x < 108).

For Pr = oo, there is a considerable simplification
since only the equation for u, equation (34), has to be
solved by the finite difference method. The boundary

condition (37) is linearized to yield
(Bu/y)g = ~1/ug, +ttg/ 2“(2);;

where u, is the current {unknown) value of the
centerline velocity and uy,, is the value at the preceding
step. When u, at each x has been obtained, h(x) was
determined from equation (27) by trapezoidal rule
integration and, with this, the temperature solution

(3N
&g

(50)

follows directly from equation

5. RESULTS AND DISCUSSION

5.1. Centerline velocity and temperature

One of the main characteristic features of the plume is
its centerline velocity. The variation of the centerline
velocity as a function of the vertical coordinate is
presented in Fig. 1. The ordinate variable is the
dimensionless velocity ug = fio/il,, while x'/*is used on
the abscissa in order to obtain a more compact
presentation than would have occurred had x itself
served as the abscissa variable. It may be noted that x
not only measures the vertical distance above the line
source, but it also serves as an index of the relative
strengths of the forced and natural convection (ie.
x = Gr/Ré®). Thus, at small x (Re® » Gr?), the mixed
convection flow is dominated by forced convection,
while natural convection plays the dominant role for
large x (Gr* » Re®).

The figure conveys the u, vs x distributions for
Prandtl numbers of 0.72, 5, and oo (solid lines). Also
appearingin the figure are dashed and dot--dashed lines
which respectively represent the u, vs x distributions
for pure natural convection and pure forced
convection. These lines may be regarded as asymptotes
for the mixed convection solutions. The forced
convection line (4, = 1) is applicable for all Prandtl
numbers, while the natural convection line that is
shown in the figure corresponds to Pr = co. The
natural convection lines for the other Prandtl numbers

40k

20

PURE FORCED CONVECTION
PURE NATURAL CONVECTION

FiG. 1. Distribution of the plume centerline velocity.
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have been omitted because their presence would have
caused congestion and overlapping. It may be noted
that since ug ~ x'/ for pure natural convection, then,
for the naturai convection asymptote, u, ~ (x!**3.
The intersections of the forced and natural
convection asymptotes have been identified by arrows
positioned just below the abscissa axis. The rightmost

arrow corresponds to the intersection for the Pr = o«
case that can be seen in the fisure, while the other

Ladol hdl LAl DL SLCID 14D 10 Rgule, Walle ulc 110k

arrowsare for the Pr = Sand 0.72 intersections(right to
left} which are not shown in the figure.

Examination of Fig. 1 shows that the centerline
velocity, initially equal to the forced convection value
1y = 1,increases with increasing distance from the line
source of heat. The increase is due to the action of
buoyancy. Further study of the figure reveals that, in

affect tha 1 ve x digtrihutian for tha mived convectian
TLLUL, LU g Vo A GESUHTTUBMUL SUT LU i a0 VOTTVOCLIOE

problem ‘rounds the corner’ of the corresponding
envelope curve made up of the pure forced and natural
convection asymptotes. In general, the envelope curve
tends to underestimate the centerline velocity. The
greatest deviation between the actual mixed convection
curve and the envelope curve occurs at the x value at
which the latter experiences its change of slope
{indicated by the arrows in Fig, 1). The valuesof x'/¢ a

which these maximum deviations occur are 1.09, 1.20,
and 1.30, respectively for Pr = 0.72, 5, and co. At these
points, the respective envelope curves lie 31, 28, and
26%; below the corresponding mixed convection curves.

Itisalso of interest to inquire about the distance from
the line source at which the u, distribution from the
mixed convection solution, in effect, coincides with that
for pure natural convection. A 29 approach is adopted
here as the criterion for the de facto coincidence of the
two solutions. The x values at which the 2% approach is
achieved are 5.8 x 10°, 13 x 10°%, and 3.1 x 10°,
respectively for Pr = 0.72, 5, and 0. Beyond these x
values, u, values for the mixed convection problem can
be obtained to high accuracy from the pure natural
convection solution.

Attention is next turned to the variation of the
centerline temperature of the plume as a function of the
vertical distance from the line source, as presented in
Fig. 2. As for the centerline velocity, results for the
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o0. In addition, a complete envelope curve is shown for
Pr =0.72, and the natural convection asymptotes for
Pr =5 and w0 are also included (complete envelope
curves for these Prandti numbers are not shown o
preserve clarity). The break points in the envelope
curves are indicated by arrows positioned at the top of
the figure, respectively at x'* = 3.13. 194 and 1.37 for
Pr=072,5and x.

Itshould be noted thatt

2
TOWIG 20 ROWA QLT O va

certain powers of x and Pr in addition to thc
dimensionless centerline temperature T;,. The choice of
this ordinate group is motivated by the fact that
To(x/Pr)''* = constant = 1/2x'/? in the limit as x — 0
(pure forced convection). Thus, with T,(x/Pr)!'? as the
ordinate, all of the mixed convection curves tend to a
common horizontal line (independent of Prandtl

Furtharmore in termg of thig

ﬂl]mkpr\ fr\r S ')]‘ X Vi LA 1HIvU T v, B AW IS U Li5dD

DWIOCT) 30U sllaa X, x

group, the natural convection asymptotes are of the
form Ty(x/Pr)t2 ~ (x'/*)7 41 Tt may also be useful to
note that

T(x/Pry? = [T ~T,)87]{Re/Pr)

From Fig. 2, it can be seen that the centerline
temperature decreases with increasing distance from
theline source and that the decrease is more rapid as the
plume progresses from forced convection dominance
(small x) to natural convection dominance (large x}.
Also, the envelope curves tend to overestimate the
centerline temperature compared with that given by the
actual mixed convection solution, and this is just
opposite to what was found for the centerline velocity.
The greatest deviation between a mixed convection
solution curve and its corresponding envelope curve
oceurs at the break point of the latter. For Pr = (.72, 5,
and oc, the break-point values of the respective
envelope curves are high by 24, 23, and 217,

The approach of the centerline temperature for the
mixed convection case to its natural convection
asymptote occurs at smaller values of x as the Prandtl
number increases, which is just opposite to the behavior
of the centerline velocity. A 2%, approach is achieved at
X =74 % 10% 53 x 10°, and 3.1 x 10* respectively
for Pr=0.72, 5, and o.

Before leaving this section, it is appropriate to

centerline temperature are given for Pr = 0.72,5,and  compare the present u, and 7, results with
06 S— ey
04l |
bob_ Pre
- .72
N ,
— G2+ '
a
~
>
PO PURE FORCED CONVECTION
——— PURE NATURAL CONVECTION
0.06+ Ny
L [ | [T ! L
O'O4O.I 04 | 4 10 40 100

Fii. 2. Distribution of the plume centerline temperature.
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corresponding results in the literature. As noted in the
Introduction, Afzal [4] dealt with the case of Pr = 0.72.
His graphical presentation for u, and T, could not be
read with acceptable accuracy. Therefore, to enable a
comparison, it was necessary to re-evaluate his series
solution.

The comparison was made over the range from
x = 25t0 10%, The agreement of the u,, results from the
two solutions was found to be in the 0.3-0.4% range,
with the T, agreement ranging from 0to 0.6%,. This level
of agreement is an affirmation of both methods of
solution.

Consideration will now be given to the development
of an algebraicrepresentation for the centerline velocity
and temperature results. The objectives of this
development are to provide results for all gas and liquid
Prandtl numbers (rather than for only a few discrete
values) and to express the x-dependence algebraically
(rather than graphically). In this regard, it is believed
that an algebraic representation offers greater
convenience and accuracy for application than does a
graphical representation.

To begin the development, it is useful to note that for
pure forced convection and pure natural convection

o =1, uy=x"2F(0) 51

respectively. If a=1 and b= F(0), then a u,
representation which coincides with these small x and
large x asymptotes can be written as

Uy = [@* +(bx° 2y, (52)

For each of the three investigated Prandtl numbers, the
value of n was determined by equating the u, from
equation (52) to the numerically determined value for
the mixed convection plume, with the matching
performed at x corresponding to the condition
a = bx%?. The thus-determined n values are very well
represented by

n = 0.53—0.09/Pr5, (53)

Equation (53) provides the ns needed in the evaluation
of equation (52). Also, @ = 1 for all Pr and b = F'()
= 0.810, 0.860, and 0.934 for Pr=10.72, 5, and .
Furthermore, an extensive tabulation of F'(0) values is
provided by Fujii {9].
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Totesttheaccuracy of equation{52),it wasemployed
to evaluate u, over an extensive range of x for each of
the three investigated Prandtl numbers. From this, it
was found that the extreme error in the 4, provided by
equation (52) was about 39, thereby affirming the
utility of the algebraic representation.

A similar approach was employed for the centerline
temperature distribution, yielding

Tolx/Pr)'? = c/[1+(ex®/d)! ™)™ (54)
where
¢=0282, d=HOyPr'?, m=026+0.04/Pr%
(35)

and d = 0.445,0.368 and 0.320 for Pr = 0.72, 5, and o,
with a more extensive tabulation available in ref. [9].
The extreme error in the results provided by equation
(54), as determined by comparisons with the actual
mixed convection solutions, is about 2%,. Thus, the
algebraic representation for Tj, is highly accurate for all
Prandtl numbers and x values.

5.2. Plume width

The width of the plume and its variation with vertical
distance from the line source is another important
result. Two widths may be considered, one for the
velocity field and the other for the temperature field.

With respect to the velocity field, it should be noted
that the presence of the line source creates a velocity
distribution that is superposed atop the uniform forced
convection approach flow u= 1. It is, therefore,
appropriate to take account of this uniform
‘background’ velocity in defining the plume width. The
definition to be employed here is that the plume width §
corresponds to the dimensionless distance from the axis
where

(u—1)/(ug—1) = 0.05. (55)

Since u, varies with x, so also will 8. In actuality, since
the plume is symmetric about the axis, & is half the
overall width of the plume.

The variation of § with x is plotted in Fig. 3 for
Pr =072, 5, and 0. The ordinate variable is §/x/2,
where the factor x'/? is introduced because § ~ x1/
for small x. Also, in terms of dimensional
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FiG. 3. Haif-width of the plume velocity profile.
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quantities, §/x''? = (5/X)Re'’2. As before, x'“* is

used as the abscissa variable to obtain a compact
presentation.

As expected, the plume width increases with x. The
x''2 increase, which holds for small x, gives way to a
somewhat slower increase at larger x. Thus,if x, and x,
respectively correspond to x = 10® and 10% then
8,/8, ~ 45while(x,/x,)'* = 100. Atlarge x, it appears
that 6 takes on the x dependence predicted by the pure
natural convection solution, ie &/xV?~ x "1
However, the numerical values of d do not coincide with
those for pure natural convection because the portion
of the velocity profile that is adjacent to the lateral edge
of the plume is influenced by the forced convection
background velocity.

At any given x, the plume width decreases with
increasing Prandtl number. The sensitivity of d to Pris
small for intermediate and large Prandtl numbers (i.e.
between 5 and o). Between Pr = (.72 and 5. there is
about a 25%, decrease in 8.

At this point, it is appropriate briefly to discuss
Afzal’s results [4]for the plume width. His width 6% was
defined as

i, 0% = j (t—u,) dy (56)
€
which resembles the displacement thickness of a
boundary layer. The feature of equation (56} which
appears to be inappropriate for the present problem is
the use of &z, as the characteristic velocity of the plume
(ie. as the multiplier of 8%*). A more reasonable
characteristic velocity would be #,. In view of this
objection, it is not believed that the 3* results of Afzal
{which correspond to his single Prandtl number of 0.72)
are physically meaningful.

The thermal width 8, of the plume will now be
considered. It will be defined as the dimensionless
distance from the plume axis where

T/T, = 0.05. (57)

The &, values determined according to this definition
are plotted in Fig. 4 in the form &,{Pr/x)'/? vs x'"*
where d {Pr/x)!? = 3.46as x — Oforall Pr. Also,itmay
be noted that d,(Pr/x)'? = (5,/%)(RePr)/%.

As was also true for 8, the thermal width 6 increases
atfirstas x /%, with a somewhat slower increaseat larger
x. In addition, the thermal width decreases with the
Prandt]l number, the decrease going as Pr''? at small »
and slightly more rapidly at larger x. From a
comparison of Figs. 3 and 4, it is seen that o, ~ ¢ {or
Pr = 0.72, but that ¢, < 8 for higher Prandti numbers.
At large Prandtl numbers, the thermal width of the
plume i1s much smaller than the velocity width.

5.3, Velocity and temperature profiles

Theevolution of the velocity profile in the plume with
increasing vertical distance from the line source is
illustrated in Fig. 5. The figure is a composite of four
graphs, each of which corresponds to a specific value of
x, namely, x = 10% 10% 5 x 10°, and 107, In cach

as a function of y/x'/? = (j/X)Re" 2. Of particular note
is that the range of the ordinate has been approximately
doubled from graph to graph in order to accommodate
the increase in velocity that accompanics an increase in
the vertical distance from the line source. The abscissa
range has been maintained the same in all graphs by
inclusion of the factor 1/x"'? in the abscissa variable.

The velocity profiles for the various Prandtl numbers
display characteristic shapes. For ull cases, the
maximum velocity is attained at the axis{y = 0)and, as
v increases, the velocity decreases toward u = [ For
Pr < o, the velocity profile is flat (Le. du/dy = O)at the
axis, but it is evident by comparing the curves for Pr
= (.72 and 5 that theextent of the flat region diminishes
with increasing Prandt! number. For the Pr = oo case,
Suféy #0 at y=0 [see equation {37)]. As a
consequence of this, the inflection point that appears in
the curves for Pr < oo disappears when Pr = .

Away from the immediate neighborbood of the axis,
the curves are ordered from upper to Jower with
increasing Prandtl number. However, owing to the
aforementioned tendency toward greater near-axis
flattening at lower Prandtl numbers, the ordering of the
curves is reversed at and near the axis.

As implied by the change in the ordinate range, there
isasignificantincreasein the velocity magnitude with x,
reflecting the role of the buoyancy. There is also

Fic. 4. Half-width of the plume temperature profile.
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F1G. S. Plume velocity profiles.

change in the shape of the curves. Those for small x tend
to be relatively flat, while for larger x the curves are
more peaked.

Some consideration was given to an alternative
presentation in which u/u, was the ordinate variable.
Owing to the just-mentioned change in shape of the
curves, the u/u, representation did little to unify the
results and, therefore, was not used.

The situation is quite different for the temperature
profiles, as witnessed by Fig. 6. Here, by plotting T/T,
vs y/dr, a profile representation was obtained that is
nearly independent of both x and Pr. The virtual x-
independence of the normalized profilesisillustrated in
the upper part of Fig. 6 for Pr = 0.72, but a similar
finding pertains to the other Prandtl numbers. In fact,
the curves are even closer together for Pr = 5 and
collapse to a single curve for Pr = co. Furthermore, in
the lower part of Fig. 6, the curves for a fixed x are seen

10

to show only slight dependence on the Prandtl number.
It was verified that a similar Prandtl number
dependence occurs at all x.

The temperature profiles were able to be correlated
because they all have common shapes. In particular, all
attain a flat maximum (6T/dy = 0) at y = 0, display an
off-axis infiection, and go to zero at large y. These
characteristics were not possessed by all the velocity
profiles, with the result that they could not be
successfully correlated, as were the temperature
profiles.

6. CONCLUDING REMARKS

Both numerical and analytical methods have been
employed to determine the velocity and temperature
fields in the mixed convection plume above a horizontal
line source of heat situated in a uniform, vertical forced

0.8

0 0.2 04

y/8,

F1G. 6. Plume temperature profiles.
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convection approach flow. The sequence of the work
was first to obtain solutions for several specific Prandtl
numbers in the range 0.72 < Pr < oc and then to
generalize the results for certain key quantities to make
them applicable to all Prandtl numbers in this range, as
well as for all vertical distances above the line source.

In general, at relatively small distances above the
source, the forced convection nature of the approach
flow plays a dominant role. At larger distances,
however, buoyancy asserts itself more and more
strongly and, at sufficiently large distances, the plume
resembles that for pure natural convection.

In presenting the results for the centerline velocity
and temperature of the mixed convection plume as a
function of the distance from the line source, the forced
convection and natural convection asymptotes were
employed to construct an envelope curve for the
corresponding mixed convection curve. For the
centerline velocity, the envelope curve bounds the
mixed convection curve from below, with a maximum
deviation of about 30°%. On the other hand, the
envelope curve for the centerline temperature falls
above the mixed convection curve by, at most, 25%,. The
distance above the line source at which the mixed
convection plume approaches to within a fixed
tolerance (e.g. 2%;) of the natural convection plume has
been identified and is given in the paper for the various
Prandtl numbers.

Generalization of the results for the centerline
velocity and temperature to apply to all Prandtl
numbers and distances from the line source is
respectively accomplished by equations (52) and (53)
and by equations (54) and (55). These algebraic
equations were found to be accurate to better than 3%
for the velocity and 2% for the temperature.

The width of the plume was defined in terms of the
distance from the axis at which the velocity and
temperature had declined to 5% of the centerline-to-
ambient difference. Both the velocity and thermal
widths, d and Jr, respectively, increased with distance
from the line source, but at a slower rate at larger
distances. For high Prandtl numbers, é; < 9.

The velocity profiles were quite flat for small
distances above the line source and became more
peaked at greater distances. The high-Pr profiles were
of a somewhat different character than those for the
other Prandtl numbers. On the other hand, the
temperature profiles were generally bell-shaped at all
vertical distances and Prandtl numbers.
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APPENDIX
SOLUTIONS FOR VERY SMALL AND VERY LARGE x

When Xx is close to zero, we have the pure forced convection
case where
(A1)

so that the temperature equation (10) reduces to the simple
heat equation

oT >*T
= (l/Pr)—:‘z— ‘AZ\
ax Cy
with the conditions
AT /oy(0) = T(x0) = 0. (A3}
(A4}

1= J uT dy.
It}

A similarity solution of this system is found. in a
straightforward manner [1], to be in our variables

T = (Pr/4nx)''? exp(— y*Pr/4x). (A3)

For very large x, #, — <, so that /i, — 0. Hence, the
appropriate boundary condition for the velocity at infinity
now becomes u(oo) = 0. This problem, therefore, reduces to
the pure natural convection case for which the most complete
and accurate solutions can be found in Fujii et al. [9]. Simi-
larity solutions for this problem are obtained using the follow-
ing transformation of variables

1= (WG F (). (A6)
T~T, = 0v*/G)'°x > Hin), (A7)
n=7Jth h=(2G) T (A8)

where G is a “reduced” gravitational acceleration given by

G = gpbr = gfQ/pc,v. (A9}

The functions F' and H are found from the solution of the
following system of ordinary differential equations:

F"'+(3/S)FF"—(1/S)F? + H =0, (A1O)

H' +(3/5)PrFH = 0, (All}
F=F'=0 at 5=20, iAl2)
FF=H=0 at 5= x, (A3}

(Al4)

3= J F'H dn
0

in which the Prandtl number appears as a parameter. In this
system, an integration has been performed to obtain equation
(A11)in contrast to the corresponding unintegrated equation
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of Fujii et al. [9], and a boundary condition H'(0) = 0, which
now is seen to be automatically satisfied because F(0) = 0, has
been dropped.

When Pr — oo, we have the lowest order (i.e. order Pr) from

{6l
H = (3Pr/10may)"? exp[(—3aoPr/10)n%]

where a, = F'(0). In terms of the non-dimensional variables
defined by equations (7) and (A7), this becomes

Tx*3Pr~ Y2 = (3/10nay)'/? exp[(—3aoPr/10)y?/x**].
(A15)
The non-dimensional stream function F(n) is now found from
F" 4+(3/S)FF"—(1/5)F?* =0,
’ ) . (A16)
F0)=0, F'(0)= —1/[2F(0)], F'(w)=0.

The numerical solution of equations (A16) gives, in particular,
a, = F'(0) = 0.9336.

It is of interest to show that equation (A 15) can be obtained
from the solution given in Section 3. First, we note that the
centerline velocity in the non-dimensional variables defined
by equation (7) is

uo = agx . (A17)
Substitution of equation (A17) into equation (27) gives
hy = (10/3a,) 2x?/5. (A18)

Then, by substitution of equations (15), (A17), and (A18) into
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equation (32), equation (A15) emerges. However, equation
(A15) can only be an asymptote to the mixed convection
problem because equation (A17) is only valid for very large x,
so that equation (A18), which was obtained by integration of
the velocity from zero to x, might not be too accurate for other
than very large x.

The above solutions for extreme values of x give asymptotes
for the mixed convection problem. We have for the centerline
values

x—-0
o = 1, (A19)
To(x/Pr)t? = (1/4m)*/2, (A20)

X = 00
up = x'SF(0), (A21)
To(x/Pr)!/? = x~ VOH(0)/Pri/? (A22)

where the necessary constants are given in Table 1.

Table 1. Constants for equations (A21) and (A22)

Pr
0.72 S 50
F(0) 0.8096 0.8597 0.9336
H(0)/Pr'/? 0.4447 0.3679 0.3198

PANACHE DE CONVECTION MIXTE AU DESSUS D’'UNE SOURCE LINEAIRE
HORIZONTALE SITUEE DANS UN ECOULEMENT FORCE

Résumé—On utilise des techniques analytiques et numériques pour résoudre les champs de vitesse et de
température dans un panache bidimensionnel de convection mixte, pour un nombre de Prandtl variant de 0,72
jusqu’a I'infini. La méthode de développement interne et externe est utilisée pour le cas Pr = oo, tandis que la
méthode parabolique, aux différences finies, fournit les solutions pour les autres nombres de Prandtl. En
général, le panache se déploie, quand augmente la distance a la source linéaire, depuis la convection forcée
Jjusqu’a ce qui ressemble a la convection naturelle pure. Les variations de vitesse et de température sur la ligne
des centres avec la distance a la source sont bordées par des courbes enveloppes construites a partir des
asymptotes pour la convection forcée pure et la convection naturelle. Des relations algébraiques trés précises,
valables pour tous les nombres de Prandtl et toutes les distances, sont développées pour généraliser les
résultats obtenus pour les nombres de Prandtl discrets. La largeur du panache augmente avec la distance 4 la
source, mais d’autant moins vite que la distance augmente. Les formes des profils de vitesse changent avec la
distance et le nombre de Prandtl, tandis que tous les profils de température posséde la forme commune en
cloche.

DIE AUFTRIEBSTROMUNG BEI GEMISCHTER KONVEKTION UBER EINER
WAAGERECHTEN LINIENQUELLE BEI ANSTROMUNG DURCH ERZWUNGENE
KONVEKTION

Zusammenfassung—Es wurden sowohl analytische als auch numerische Verfahren angewendet, um
Geschwindigkeits- und Temperaturfelder der zweidimensionalen gemischten Auftriebsstromung fiir Prandtl-
Zahlen von 0,72 bis unendlich zu berechnen. Fiir den Fall Pr = oo wurde die Methode der inneren und duBeren
Reihenentwicklung angewendet, wihrend fiir die anderen Prandtl-Zahlen ein parabolisches finites
Differenzenverfahren die Losungen lieferte. Prinzipiell wurde festgestellt, daB sich die Auftriebsstrémung mit
zunehmender Entfernung von der Linienquelle in ihrem Charakter von der fiir erzwungene Konvektion
typischen Form zu einer Form hin entwickelt, die bei reiner freier Konvektion auftritt. Die Anderungen von
Geschwindigkeit und Temperatur an der zentralen Achse mit der Entfernung von der Linienquelle wurden
durch Hiillkurven eingegrenzt, die aus den Asymptoten fiir reine erzwungene und reine freie Konvektion
konstruiert wurden. AuBerst genaue algebraische Gleichungen fiir alle Prandtl-Zahlen und alle Entfernungen
von der Linienquelle wurden hergeleitet, um die Ergebnisse, die fiir die verschiedenen diskreten Prandtl-
Zahlen erhalten worden waren, zu verallgemeinern. Die Breite des Auftriebsgebietes vergroBerte sich mit dem
Abstand von der Quelle, jedoch mit zunehmender Entfernung langsamer. Die Gestalt der
Geschwindigkeitsprofile 4nderte sich sowohl mit der Entfernung als auch mit der Prandtl-Zahl, die
Temperaturprofile zeigten dagegen alle eine gemeinsame glockenartige Form.
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CMEWIAHHAS KOHBEKLMS B [IOABEMHOM TEYEHHUU HAJ I'OPHU3OHTAJIbHbIM
JIMHEHHBIM MCTOYHUKOM, OETEKAEMBIM HABETAIOIIUM TMOTOKOM C
BbIHYXXJEHHOW KOHBEKIIMEW

AHHOTRUMS — AHATUTHYECKMMH M YHC/ICHHBIMH METONAMH TONYYeHbl PELIEHUS I8 10Ae#H cKopoct i
¥ TEMIEpaTypel B ABYMEPHOH CTpye B DEXHME CMCLUAHHON KOHBEKUMH B [HANA3OHC HIMEHEHUR
aucen [panarna ot 0,72 g0 Geckoneunoctu. s ciyvas Pr = 7% HCNOJIL30BAICE METOA BHYTPCHHHX
M BHCLIHUX Da3JIOXKEHMH, a Ins Apyrux 3HakeHuit uucaa [Ipannris napaboaHyecknii Me10.
KOHEYHBIX Pa3sHOCTeH. B menom Haineso, 4To no Mepe ylNaileHUs OT JIMHEHHOTO HCTOMHMKA XAPAKTEp
CTPYH H3MEHSETCS OT PEXHMA TEYEHHS YHCTO BBIHYXKIECHHOW KOHBEKUHH /O PEXHMA CCTECTBEHHOM
KOHBeKLUHM. 3MEHEHNS CKOPOCTH M TEMNEPATYpbl BAObL OCH II0bEMHON’ CTPYH 1i0 Mepe y1aileHHus
OT /MHEHHOrO HCTOYHMKA OINMCHIBAKOTCH KPHBLIMH, IOCTPOCHHBIMH MO ACHMNOTOTAM LI GHUCTC
BBIHYX/ICHHOHW M YMCTO €CTECTBEHHOH KOHBekIMM. C 1ieiibto 00OOILEHHS PE3Y.IbTATOR, HMOJIY4EHHBIX
AUTSL PA3/IMYHBIX IMCKPETHBIX 3Ha4YeHMH yucna [lpaunaris. nosyueHsl BecbMa TOUHbIE airebpauveckue
COOTHOLICHHSI, CHPABEUIUBLIE 1714 BeeX uHce [1paHATs M BCex pacCTOAHME OT JIHMHEHHOIO UCTOYHHMKA.
[upyHa NOABEMHON CTPYH YBE/MYHMBACTCH ¢ PACCTOAHMCM OT HCTOYHUKA, NPHYEM TCM MCIUICHHEE,
4eM Jasiblie OT Hero. Bua nmpoduneit cKOpOCTH M3MEHSETCS B 3aBUCHMOCTH Kak OT PAcCTOSHHA,
TaK ¥ OT yucaa Flpanatnd, B To BpeMs Kak NpodHIH TeMIepaTyp HMEIT OOBIMHYIO KOJOKONOBPA3HY IO
bopmy



